Abstract

Organic photovoltaic (OPV) devices hold a great deal of promise for the emerging solar market. However, to unlock this promise, it is necessary to understand how OPV devices generate free charges. Here, we analyze the energetics and charge delocalization of the interfacial charges in poly(p-phenylenevinylene) (PPV)/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and poly(3-hexylthiophene-2,5-diyl) (P3HT)/PCBM devices. We find that, in the PPV system, the interface does not produce molecular disorder, but an interfacial electric field is formed upon the inclusion of environmental polarization that promotes charge separation. In contrast, the P3HT system shows a significant driving force for charge separation due to interfacial disorder confining the hole. However, this feature is overpowered by the polarization of the electronic environment, which generates a field that inhibits charge separation. In the two systems studied herein, electrostatic effects dominate charge separation, overpowering interfacia...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.