Abstract

The present paper investigates the impact of canyon geometry on the temperature regime and nocturnal heat island development in the very dense urban area of Athens, Greece. Detailed measurements of air temperature have been carried out within three deep urban canyons of different aspect ratios (H/W = 3, 2.1 and 1.7) during the night period of the summer and autumn of 2007. An analysis was carried out to investigate the relative impact of the canyon geometry, the undisturbed wind velocity, ambient temperature, and cloud cover on the development of a nocturnal heat island. A clear increase of the median, maximum and minimum values of the cooling rates has been observed for decreasing aspect ratios. Under low ambient temperatures, high wind speeds correspond to a substantial rise of the cooling rate in the urban canyons mainly because of the increased convective losses. On the contrary, cooling rates decrease substantially under high-undisturbed wind speeds and ambient temperatures because of the important convective gains. The impact of cloud cover was found to be important as cloudy skies cause a substantial decrease of the cooling rates in the urban canyons. Comparisons were performed between the temperature data collected in the three studied urban canyons and temperatures recorded in an urban as well as a suburban open space station.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.