Abstract

The principal site for gaseous exchange within the lung is the alveolar space, which is bathed in a lipid‐protein blend called pulmonary surfactant. This material is the initial contacting site for orally inhaled products and environmental toxins. Using the lung biosimulator, this study investigates the influence of cannabis smoke on the activity of the lung surfactant replacement product, Curosurf. Initially, 50‐mg cannabis material was pyrolysed and the smoke collected. Cannabis smoke profiling was conducted via gas chromatography–mass spectroscopy, with a mean concentration of 1% Δ9‐tetrahydrocannabinol determined. The smoke aliquots were transferred to the lung biosimulator and expansion—contraction cycles were then initiated to mimic tidal breathing. Baseline data confirmed that Curosurf works effectively under physiologically relevant conditions. Exposure to cannabis smoke from 2 independent batches reduced the Langmuir maximum surface pressure values by approximately 20% and increased the compressibility term; interbatch variation was detected. Cannabis smoke impaired the ability of Curosurf to lower the surface tension term. This was ascribed to the penetration of the planar, hydrophobic drug into the two‐dimensional film, and destructive interaction with polar functionalities. The net effect would be increased work of breathing for the individual.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.