Abstract
This study aimed to evaluate the impact of Candida albicans on subgingival biofilm formation on dental implant surfaces. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were used to compare biofilm structure and microbial biomass in the presence and absence of the fungus after periods of 24, 48, and 72 h. Quantitative polymerase chain reaction (qPCR) was used to quantify the number of viable and total micro-organisms for each of the biofilm-forming strains. A general linear model was applied to compare CLSM and qPCR results between the control and test conditions. The biofilm developed with C. albicans at 72 h had a higher bacterial biomass and a significantly higher cell viability (p < 0.05). After both 48 and 72 h of incubation, in the presence of C. albicans, there was a significant increase in counts of Fusobacterium nucleatum and Porphyromonas gingivalis and in the cell viability of Streptococcus oralis, Aggregatibacter actinomycetemcomitans, F. nucleatum, and P. gingivalis. Using a dynamic in vitro multispecies biofilm model, C. albicans exacerbated the development of the biofilm grown on dental implant surfaces, significantly increasing the number and cell viability of periodontal bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.