Abstract
Due to its degradability, magnesium holds potential for the application as a base material for local treatment systems. Particularly for the therapy of severe brain-related diseases, local approaches are advantageous. To confirm the suitability of magnesium as a material for neural implants, information on the interaction of brain cells with magnesium is essential. Initial steps of such an evaluation need to include not only cytocompatibility tests but also the analysis of the in vitro material degradation to predict in vivo material performance. Considering the sensitivity and functional importance of neural tissue, an in-depth understanding of the processes involved is of particular relevance. Here, we investigate the influence of four different brain cell types and fibroblasts on magnesium degradation in direct material contact. Our findings indicate cell type as well as cell density-dependent degradation behavior. Metabolic activity (lactate content) appears to be crucial for degradation promotion. Extracellular matrix composition, distribution, and matrix/cell ratios are analyzed to elucidate the cell-material interactions further.Statement of SignificanceThanks to their degradability, magnesium (Mg)-based materials could be promising biomaterials for local ion or even drug delivery strategies for the treatment of severe brain-related diseases. To confirm the suitability of Mg as a neural implant material, information on the interaction of brain cells with Mg is essential. Initial steps of such an evaluation need to include cytocompatibility tests and the analysis of the in vitro material degradation to predict in vivo material performance. The present study provides data on the influence of different brain cell types on Mg degradation in direct material contact. Our findings indicate cell type and cell density-dependent degradation behavior, and elucidate the role of cell metabolites and extracellular matrix molecules in the underlying degradation mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.