Abstract

Natural products such as epigallocatechin-3-gallate (EGCG) have been suggested for complementary treatments of cancer, since they lower toxic side effects of anticancer drugs, and possess anti-inflammatory and antioxidant properties that inhibit carcinogenesis. Their effects on cancer cells depend on interactions with the membrane, which is the motivation to investigate Langmuir monolayers as simplified membrane models. In this study, EGCG was incorporated in zwitterionic dipalmitoyl phosphatidyl choline (DPPC) and anionic dipalmitoyl phosphatidyl serine (DPPS) Langmuir monolayers to simulate healthy and cancer cells membranes, respectively. EGCG induces condensation in surface pressure isotherms for both DPPC and DPPS monolayers, interacting mainly via electrostatic forces and hydrogen bonding with the choline and phosphate groups of the phospholipids, according to data from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Both monolayers become more compressible upon interaction with EGCG, which may be correlated to the synergy between EGCG and anticancer drugs reported in the literature. The interaction with EGCG is stronger for DPPC, leading to stronger morphological changes in Brewster angle microscopy (BAM) images and higher degree of condensation in the surface pressure isotherms. The changes induced by blue irradiation on DPPC and DPPS monolayers were largely precluded when EGCG was incorporated, thus confirming its antioxidant capacity for both types of membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.