Abstract

Bilirubin ditaurate (BRT), a conjugated bilirubin analogue, has demonstrated anti-platelet characteristics following acute ex vivo exposure. Scavenging of mitochondrial superoxide and attenuation of granule exocytosis suggested a potential benefit for including BRT for storage. With no reports of cytotoxicity following acute exposure, the impact of 35µM BRT on platelet function was investigated, in clinically suppled units, for up to seven days. Exposure to 35µM BRT significantly reduced mitochondrial membrane potential and increased glucose consumption until exhaustion after 72 hours. Platelet aggregation and activation was significantly impaired by BRT. Mitochondrial superoxide production and phosphatidylserine expression were significantly elevated following glucose exhaustion, with decreased viability observed from day five onwards. Lactate accumulation and loss of bicarbonate, support a metabolic disturbance, leading to a decline of quality following BRT inclusion. Although acute ex vivo BRT exposure reported potentially beneficial effects, translation from acute to chronic exposure failed to combat declining platelet function during storage. BRT exposure resulted in perturbations of platelet quality, with the utility of BRT during storage therefore limited. However, these are the first data of prolonged platelet exposure to analogues of conjugated bilirubin and may improve our understanding of platelet function in the context of conjugated hyperbilirubinemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.