Abstract

To predict the metallurgical results of industrial plants, laboratory batch flotation tests are carried out, relating both operations through scale-up factors. However, robust scale-up procedures and well-defined laboratory protocols are necessary to reach reliable results at industrial scale. In this paper, results from different flotation batch tests are presented, analysing the effect of batch protocol in terms of operating conditions, operator, ore type, water quality, and others on the metallurgical response. Additionally, the ability of batch responses to describe industrial operations and determine scale-up factors was analysed. Then, a sensitivity analysis was carried out, considering the effect of batch and industrial conditions on the estimation of scale-up factors. Results showed that the batch response significantly changes, depending on the operating conditions, flotation operator, and batch flotation machine, even for the same cell design. Additionally, it was observed that the batch recovery significantly changes when modifying ore type and water quality, which can cause changes in batch and/or industrial operation, affecting the scale-up factors. In addition, results showed that the scale-up factors varied significantly by changing operating conditions in a batch cell. This also occurs in plants when metallurgical performance changes, for example, due to a modification in launder design and/or operating condition, to increase recovery, or due to control limitations that prevent efficient metallurgical performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call