Abstract

We use two simulations performed within the Constrained Local UniversE Simulation (CLUES) project to study both the shape and radial alignment of (the dark matter component of) subhaloes; one of the simulations is a dark matter only model while the other run includes all the relevant gas physics and star formation recipes. We find that the involvement of gas physics does not have a statistically significant effect on either property -- at least not for the most massive subhaloes considered in this study. However, we observe in both simulations including and excluding gasdynamics a (pronounced) evolution of the dark matter shapes of subhaloes as well as of the radial alignment signal since infall time. Further, this evolution is different when positioned in the central and outer regions of the host halo today; while subhaloes tend to become more aspherical in the central 50% of their host's virial radius, the radial alignment weakens in the central regime while strengthening in the outer parts. We confirm that this is due to tidal torquing and the fact that subhaloes at pericentre move too fast for the alignment signal to respond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.