Abstract

In present work, the influence of internal acceptors and π-spacers on optoelectronic properties for dye-sensitized solar cells (DSSCs) is investigated. The dyes consist of various internal acceptors (A), a triphenylamine donor and π-spacers combined with cyanoacrylic acid acceptor. Density functional theory (DFT) was employed to inspect the dye geometries, charge transport characteristics and electronic excitations. The frontier molecular orbitals (FMOs), highest occupied molecular orbital, lowest unoccupied molecular orbital and HOMO-LUMO energy gap are assisted in the determination of suitable energy levels for electron transfer, electron injection and regeneration of dye. The required photovoltaic parameters like JSC, ΔGreg, ΔGinj, LHE and other associated parameters are presented. The results demonstrate that altering the π-bridge and adding an internal acceptor to the D-π-A scaffold changes the photovoltaic properties and absorption energies. Therefore, the key objective of the current effort is to launch a theoretical groundwork for suitable operational alterations and scheme in creating successful DSSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.