Abstract

Thermal desorption coupled with different detectors is an important analysis method for ambient carbonaceous aerosols. However, it is unclear how the compounds coexisting in both the gas and particle phases affect carbonaceous aerosol concentrations and measurements during thermal desorption. We observed matrix effects leading to a redistribution of different OC fractions (OC1 to OC4) during the thermal desorption process. These factors led to the formation of OC with low volatility (OC4), mainly from high-volatility OC (OC1 and OC2). Laboratory studies further indicated that ammonium promotes such matrix effects by transforming OC in the particle phase. Therefore, in addition to providing insights into the chemical evolution of OC during haze events, we argue that thermal-desorption-based OC measurements should be used with caution, which is an important step towards a more accurate measurement of OC in the ambient atmosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.