Abstract
Abstract In this study, the influence of distribution of ammonia feed along the height of a fixed bed membrane reactor (FBMR) for ammonia decomposition to hydrogen is investigated to understand the leverage of this approach. A rigorous heterogeneous model with verified kinetics is implemented to simulate the reactor. The simulation results indicate that the application of a distributed ammonia feed with equal distribution of injection points resulted in a 17.45% improvement in hydrogen production rate at a low temperature of 800.0 K over a FBMR without feed distribution. In the parameter space of this study, it has been shown that the ammonia conversion is sensitive to the number of distribution points and has an optimal value. It is found that the implication of the optimum number of injection points can substantially reduce the length of the reactor by 75.0% to achieve 100.0% ammonia conversion. The hydrogen reversal permeation phenomenon is observed at a low pressure and the upper part of the reactor. A novel configuration of a FBR and a FBMR with feed distribution is proposed for efficient production of ultra-pure hydrogen at a relatively low pressure. The critical reactor length ratio has been provided for this configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.