Abstract

ABSTRACTThree different perfluorinated type polymers as anion exchange membranes for electrochemical applications were studied. They have a sulfonamide linkage to a spacer methylene chain attached to a tri‐methyl ammonium cation, specifically using a three carbon spacer chain (PFAEM_H_C3), and methylated imide polymers with three (PFAEM_CH3_C3) and six carbon spacer chain (PFAEM_CH3_C6). There are significant number of zwitterionic side chains in the PFAEM_H_C3 polymer and very few in the PFAEM_CH3_C3 or the PFAEM_CH3_C6 polymer. They have similar halide conductivity, but the PFAEM_CH3_C6 showed highest OH− conductivity, 122 mS cm−1 at 80 °C and 95% RH. The larger spacer chain polymer, PFAEM_CH3_C6 has a higher water uptake value (λ = 9) compared to PFAEM_CH3_C3(λ = 7) at 60 °C and 95% RH in the Cl− form. Therefore, it has a larger domain spacing of 4.9 nm versus 4.1 nm from small angle X‐ray scattering data. The polymer was characterized by FTIR and DFT was used to fully assign the spectra. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 700–712

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.