Abstract

Astrocytic endfeet membranes are studded with aquaporin-4 (AQP4) containing orthogonal arrays of particles (OAP) which can be visualized exclusively by the freeze-fracturing method. They are predominantly expressed where the astroglial membrane is in contact with the superficial and perivascular basal lamina. This polarity seems to be essential for the integrity of the blood-brain barrier (BBB). The basal lamina containing many extracellular matrix (ECM) components such as collagen, laminin and heparansulfate proteoglycans like agrin is thought to influence this OAP-related polarity of astrocytes. Recently, we have shown that agrin, in particular the neuronal isoform A4B8, is capable of influencing the formation of OAPs in astrocytes when cultured in the presence of agrin-conditioned media. In this paper we wanted to investigate whether coating with exogenous agrin compared to coating with other ECM components would induce OAP formation in astrocytes of the agrin-null mouse. For this purpose, we cultured astrocytes from agrin-null and wild-type mice on agrin- or ECM-coated surfaces. Immunofluorescent cytochemical staining of AQP4 indicated a higher AQP4 expression level in cultures with agrin- or ECM-coated than in cultures with uncoated surfaces, whereas western blot analyses and PCR showed no differences. α-Dystroglycan is thought to be a potential receptor of agrin and was immunostained in wild-type as well as in agrin-null astrocytes. In freeze-fracture replicas, we observed an increase in OAP density in astrocytes when growing on agrin- and ECM-coatings. These results concurred with other experiments in which changes in volume were measured following hypotonic stress, which supported the positive influence of exogenous agrin on AQP4 insertion into the membrane, on OAP formation and on water transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call