Abstract

Oligothiophenes and their aggregates play a dominant role in optoelectronic and light-harvesting applications. Here, we controlled the degree of aggregation of 2,2':5',2″:5'',2‴-quaterthiophene (QTH) to shed light on the impact of the aggregation on the excited state dynamics. QTH aggregation realized the control over the Intersystem Crossing (ISC) rates and, in turn, the formation of triplet excited states via the simple addition of water to QTH solutions in THF. From global target analysis, the time scale was 345.5 ps for ISC for QTHs in THF, but it was 2.33 ns in the case of QTH solutions featuring 70% water. Notably, the excitonic coupling between closely packed QTHs occurred predominantly in the aggregates formed in the presence of large water concentrations. Relaxation dynamics of the resulting QTH-aggregates differed substantially from QTH solutions at lower water content. For example, QTH-aggregates lacked any triplet excited states, and the unusual emission occurs from lower excitonic states from these predominantly H-aggregates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.