Abstract

A high resolution analysis of benthic foraminifera as well as of aeolian terrigenous proxies extracted from a 37m-long marine core located off the Mauritanian margin spanning the last ~1.2Ma, documents the possible link between major continental environmental changes with a shift in the isotopic signature of deep waters around 1.0–0.9Ma, within the so-called Mid-Pleistocene Transition (MPT) time period. The increase in the oxygen isotopic composition of deep waters, as seen through the benthic foraminifera δ18O values, is consistent with the growth of larger ice sheets known to have occurred during this transition. Deep-water mass δ13C changes, also estimated from benthic foraminifera, show a strong depletion for the same time interval. This drastic change in δ13C values is concomitant with a worldwide 0.3‰ decrease observed in the major deep oceanic waters for the MPT time period. The phase relationship between aeolian terrigeneous signal increase and this δ13C decrease in our record, as well as in other paleorecords, supports the hypothesis of a global aridification amongst others processes to explain the deep-water masses isotopic signature changes during the MPT. In any case, the isotopic shifts imply major changes in the end-member δ18O and δ13C values of deep waters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.