Abstract

abridged: We use XSCORT, together with the hydrodynamic accretion disc wind simulation from Proga & Kallman (2004), to calculate the impact that the accretion disk wind has on the X-ray spectrum from a 1E8 solar mass black hole Active Galactic Nuclei (AGN) accreting at 0.5 L/L_Edd. The properties of the resulting spectra depend on viewing angle and clearly reflect the distinct regions apparent in the original hydrodynamic simulation. Very equatorial lines-of-sight (l.o.s) are dominated by Compton scattering and nearly-neutral absorption. Polar l.o.s result in largely featureless spectra. Finally, l.o.s that intersect the transition region between these extremes have a wide range of absorption features imprinted on the spectrum. Both polar and transition region l.o.s produce spectra that show highly-ionized, blue-shifted, Fe absorption features that are qualitatively similar to features observed in the X-ray spectra of a growing number of AGN. The spectra presented here clearly demonstrate that current simulations of line driven AGN accretion disk winds cannot reproduce the smooth soft X-ray excess. Furthermore, they predict that high accretion rate (L/L_Edd) AGN are likely to be strongly affected by obscuration, in sharp contrast to the clean picture that is generally assumed, based on the observed relation between the opening angle of the molecular torus and AGN luminosity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.