Abstract
In this paper, through TCAD simulations, we show that the introduction of a thin paraelectric (PE) layer between the ferroelectric (FE) and dielectric (DE) layers in an MFIS structure, expands the design space for the FE layer enabling hysteresis-free and steep subthreshold behavior, even with a thicker FE layer. This can be explained by analyzing the FE-PE stack from a capacitance perspective where the thickness of the PE layer in the FE-PE stack has the effect of reducing the FE layer thickness, while also reducing the remnant polarization. Finally, for the same FE-PE-DE stack, analog performance parameters such as \(\frac {G_{m}}{G_{ds}}\) and \(\frac {G_{m}}{I_{d}}\) are analyzed, showing good characteristics over a wide range of gate lengths, at low drain voltages, thus demonstrating applicability for low power applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.