Abstract

To improve abdominal aortic aneurysm (AAA) rupture risk assessment, a large, longitudinal study on AAA hemodynamics and biomechanics is necessary, using personalized fluid-structure interaction (FSI) modeling. 3-dimensional, time-resolved ultrasound (3D+t US) is the preferred image modality to obtain the patient-specific AAA geometry for such a study, since it is safe, affordable and provides temporal information. However, the 3D+t US field-of-view (FOV) is limited and therefore often fails to capture the inlet and aorto-iliac bifurcation geometry. In this study, a framework was developed to add parametric inlet and bifurcation geometries to the abdominal aortic aneurysm geometry by employing dataset statistics and parameters of the AAA geometry. The impact of replacing the patient-specific inlet and bifurcation geometries, acquired using computed tomography (CT) scans, by parametric geometries was evaluated by examining the differences in hemodynamics (systolic and time-averaged wall shear stress and oscillatory shear index) in the aneurysm region. The results show that the inlet geometry has a larger effect on the AAA hemodynamics (median differences of 7.5 to 18.8%) than the bifurcation geometry (median differences all below 1%). Therefore, it is not feasible to replace the patient-specific inlet geometry by a generic one. Future studies should investigate the possibilities of extending the proximal FOV of 3D+t US. However, this study did show the feasibility of adding a parametric bifurcation geometry to the aneurysm geometry. After extending the proximal FOV, the obtained framework can be used to extract AAA geometries from 3D+t US for FSI simulations, despite the absence of the bifurcation geometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call