Abstract

IntroductionThe immunoreceptor tyrosine-based activation motif (ITAM) pathway provides osteoclast co-stimulatory signals and regulates proliferation, survival and differentiation of effector immune cells. In the osteoclast, the receptors Triggering Receptor Expressed on Myeloid cells 2 (TREM2) and Osteoclast Associated Receptor (OSCAR) and their respective adaptor proteins, DAP12 and FcRγ mediate ITAM signals and induce calcium signaling and the crucial transcription factor, NFATc1. In rheumatoid arthritis (RA), OSCAR expression by monocytes is inversely correlated with disease activity. Additionally, serum levels of OSCAR are reduced in RA patients versus healthy controls suggesting that expression and secretion or cleavage of soluble (s) OSCAR is immune modulated. Recent data suggest that endothelial cells may also be a source of OSCAR.MethodsITAM receptors, their adaptor proteins, and NFATc1 and cathepsin K were detected in human synovial tissues by immunohistochemistry. Synovial tissues from patients with active RA were compared with tissue from patients in remission, osteoarthritis (OA) patients and healthy individuals. OSCAR was measured by immunoassay in synovial fluids recovered from active RA and OA patients. Endothelial cells were cultured with or without 5 ng/mL TNF-α or IL-1β over 72 hours. Temporal expression of OSCAR mRNA was assessed by qRT PCR and OSCAR protein in the supernatant was measured by ELISA.ResultsSignificantly higher (P < 0.05) NFATc1-positive inflammatory cell aggregates were found in active RA tissues than in healthy synovial tissue. Similarly, the percentage of OSCAR, FcRγ, DAP12 and TREM2 positive cells was significantly higher in active RA tissues compared to the healthy synovial tissue. Notably, OSCAR was strongly expressed in the microvasculature of the active RA tissues (9/9), inactive RA (8/9) weakly in OA (4/9) but only in the lumen of healthy synovial tissue (0/8). OSCAR levels were detected in synovial fluids from both RA (47 to 152 ng/mL) and OA (112 to 145 ng/mL) patients. Moreover, OSCAR mRNA expression and soluble OSCAR release was stimulated by TNF-α and IL1-β in cultured endothelial cells.ConclusionsIncreased levels of ITAM related factors were present in synovial tissue from active RA joints compared to OA and healthy joints. OSCAR was strongly expressed by the vasculature of active RA patients and membrane bound and soluble OSCAR was stimulated by inflammatory mediators in endothelial cells in vitro.

Highlights

  • The immunoreceptor tyrosine-based activation motif (ITAM) pathway provides osteoclast costimulatory signals and regulates proliferation, survival and differentiation of effector immune cells

  • The percentage of Osteoclast Associated Receptor (OSCAR), Fc receptor common g chain (FcRg), DNAX-activating protein 12kDa (DAP12) and Triggering Receptor Expressed on Myeloid cells 2 (TREM2) positive cells was significantly higher in active rheumatoid arthritis (RA) tissues compared to the healthy synovial tissue

  • OSCAR was strongly expressed by the vasculature of active RA patients and membrane bound and soluble OSCAR was stimulated by inflammatory mediators in endothelial cells in vitro

Read more

Summary

Introduction

The immunoreceptor tyrosine-based activation motif (ITAM) pathway provides osteoclast costimulatory signals and regulates proliferation, survival and differentiation of effector immune cells. The receptors Triggering Receptor Expressed on Myeloid cells 2 (TREM2) and Osteoclast Associated Receptor (OSCAR) and their respective adaptor proteins, DAP12 and FcRg mediate ITAM signals and induce calcium signaling and the crucial transcription factor, NFATc1. In rheumatoid arthritis (RA), OSCAR expression by monocytes is inversely correlated with disease activity. Rheumatoid arthritis (RA) is an autoimmune disease that involves dysregulated immune cell functions. It is characterized by joint damage and systemic bone loss associated with excessive osteoclast activity [1,2,3,4]. RANKL binds to its receptor, RANK, on osteoclast precursors instigating the differentiation of monocytes into multinucleated mature osteoclasts via activation of key signaling cascades involving the transcription factor, nuclear factor of activated T cells (NFATc1) (reviewed by Asagiri et al [8])

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call