Abstract

The adherens junctions (AJs) maintain the epithelial cell layers' structural integrity and barrier function. AJs also play a vital role in various biological and pathological processes. AJs perform these functions through the cadherin-catenin adhesion complex. This study investigated the presence, cell-specific localization, and temporal distribution of AJ components such as classical type I cadherins and beta-catenin in the cow cervix and vagina during the estrous cycle. Immunohistochemistry and Western blot analysis results demonstrated that beta-catenin and epithelial (E)-, neural (N)-, and placental (P)-cadherins are expressed in the cow cervix and vagina during the estrous cycle. These adhesion molecules were localized in the membrane and cytoplasm of the ciliated and non-ciliated cervical cells and the stratified vaginal epithelial cells. Positive immunostaining for P-, N-cadherin, and beta-catenin was also observed in the vascular endothelial cells of the cervical and vaginal stroma. Quantitative immunohistochemistry examinations revealed that in the cervical and vaginal epithelia, P-cadherin's optical density values (ODv) were the highest; in contrast, the N-cadherin ODv were the lowest. The ODv of P-cadherin and beta-catenin in the cervical epithelium and E-cadherin in the vagina were significantly higher in the luteal phase versus the follicular phase of the estrous cycle. Furthermore, the ODv of P-cadherin, N-cadherin, and beta-catenin in the cervix's central and peripheral epithelial regions were different during the estrous cycle. These findings indicate that classical cadherins and beta-catenin in the cervix and vagina exhibit cell- and tissue-specific expression patterns under the influence of estrogen and progesterone hormones during the estrous cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call