Abstract

The marine mussel Mytilus edulis, tolerant to a wide range of environmental changes, combines a key role as a sentinel species for environmental monitoring programs and a significant economic importance. Mortality events caused by infective agents and parasites have not been described in mussels, which suggests an efficient immune system. This study aims at identifying the molecular mechanisms involved in the early immune responses M. edulis' hemocytes challenged with Vibrio splendidus LGP32 strain during 2, 4 and 6 h.A total of 149,296 assembled sequences has been annotated and compared to KEGG reference pathways. Several immune related sequences were identified such as Toll-Like receptors (TLRs), transcription factors, cytokines, protease inhibitors, stress proteins and sequences encoding for proteins involved in cell adhesion, phagocytosis, oxidative stress, apoptosis and autophagy.Differential gene expression clustered 10 different groups of transcripts according to kinetics of transcript occurrence. Sequences were assigned to biological process gene ontology categories. Sequences encoding for galectins, fibrinogen-related proteins, TLRs, MyD88, some antimicrobial peptides, lysosomal hydrolases, heat shock proteins and protease inhibitors, as well as proteins of oxidative stress and apoptosis were identified as differently regulated during the exposure to V. splendidus LGP32.The levels of candidate transcripts were quantified in M. edulis' hemocytes exposed to V. splendidus LGP32 and 7SHRW by using branched DNA technology. Transcripts encoding for inhibitor kappa B, inhibitor of apoptosis proteins, tumor protein D54, serine/threonine-proteine kinase SIK2 were identified as up-regulated in hemocytes exposed to both strains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call