Abstract
Abstract Let $\varphi : {{\mathbb{P}}}^1( {{\mathbb{F}}}_q)\to{{\mathbb{P}}}^1( {{\mathbb{F}}}_q)$ be a rational map of degree $d>1$ on a fixed finite field. We give asymptotic formulas for the size of image sets $\varphi ^n( {{\mathbb{P}}}^1( {{\mathbb{F}}}_q))$ as a function of $n$. This is done using properties of Galois groups of iterated maps, whose connection to the size of image sets is established via the Chebotarev Density Theorem. We apply our results in the following setting. For a rational map defined over a number field, consider the reduction of the map modulo each prime of the number field. We use our results to give explicit bounds on the proportion of periodic points in the residue fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.