Abstract

As an optical molecular imaging modality, fluorescence molecular tomography (FMT) can monitor the activities of organisms in vivo at the molecular and cellular levels. However, the recovered image quality is affected by mesh voxel when the finite element method is utilized to recover the fluorescence probe. The target localization is likely to deviate from the actual target under the coarse mesh, but using the fine mesh will increase the number of unknowns, which makes the computational burden heavier and further aggravate the ill-posedness. To solve the problem, a reconstruction strategy using a non-uniform mesh for FMT is developed in this paper. The numerical experiment and physical experiment validated that the strategy is capable and effective for FMT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.