Abstract

To assess the image quality of deep-learning image reconstruction (DLIR) of chest computed tomography (CT) images on a mediastinal window setting in comparison to an adaptive statistical iterative reconstruction (ASiR-V). Thirty-six patients were evaluated retrospectively. All patients underwent contrast-enhanced chest CT and thin-section images were reconstructed using filtered back projection (FBP); ASiR-V (60% and 100% blending setting); and DLIR (low, medium, and high settings). Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were evaluated objectively. Two independent radiologists evaluated ASiR-V 60% and DLIR subjectively, in comparison with FBP, on a five-point scale in terms of noise, streak artefact, lymph nodes, small vessels, and overall image quality on a mediastinal window setting (width 400 HU, level 60 HU). In addition, image texture of ASiR-Vs (60% and 100%) and DLIR-high was analysed subjectively. Compared with ASiR-V 60%, DLIR-med and DLIR-high showed significantly less noise, higher SNR, and higher CNR (p<0.0001). DLIR-high and ASiR-V 100% were not significantly different regarding noise (p=0.2918) and CNR (p=0.0642). At a higher DLIR setting, noise was lower and SNR and CNR were higher (p<0.0001). DLIR-high showed the best subjective scores for noise, streak artefact, and overall image quality (p<0.0001). Compared with ASiR-V 60%, DLIR-med and DLIR-high scored worse in the assessment of small vessels (p<0.0001). The image texture of DLIR-high was significantly finer than that of ASIR-Vs (p<0.0001). DLIR-high improved the objective parameters and subjective image quality by reducing noise and streak artefacts and providing finer image texture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call