Abstract

The existing DNA based image cryptosystems, their DNA coding scheme just employs four DNA symbols, namely A, T, C and G, to represent the four binary two-tuples, namely 00b, 01b, 10b and 11b, respectively. And the used DNA computing algorithms, such as DNA addition and subtraction, are essentially the binary modulo 2 addition and XOR operations without any meanings of genetic engineering, which cannot apply to the DNA computer for processing. So, this paper discussed the DNA coding of image and proposed a new DNA join operation. And the complementary operation of DNA code instead of the complementary operation of binary number is used in the proposed. The piecewise linear chaotic map was employed to generate the key stream. Then, a new DNA based image cryptosystem including two rounds of DNA diffusion and DNA confusion was proposed, which can be rapidly implemented in the DNA computer. The image cryptosystem was simulated with an electronic computer, and the results show that the proposed system possesses the characteristics of large key space, good statistical properties of cipher images, high sensitivities of key and plain images and big information entropy. Therefore, the proposed image cryptosystem is a candidate for the future secure communication application to the DNA computer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.