Abstract

The molecular mechanisms behind the pathogenesis of post-burn hypertrophic scar (HS) remain unclear. Here, we investigate the role of interleukin-6 (IL-6) trans-signaling-STAT3 pathway in HS fibroblasts (HSF) derived from burned-induced HS skin. HSF showed increased Tyr 705 STAT3 phosphorylation over normal fibroblast (NF) after IL-6•IL-6Rα stimulation by immunoassays. The endogenous STAT3 target gene, SOCS3, was upregulated in HSF and showed increased STAT3 binding on its promoter relative to NF in Chromatin Immunoprecipitation assay. We observed that the cell surface signaling transducer glycoprotein 130 is upregulated in HSF using Q-RT-PCR and flow cytometry. The production of excessive extracellular matrix (ECM), including the expression of alpha2 (1) procollagen (Col1A2) and fibronectin 1 (FN) were seen in HSFs. A STAT3 peptide inhibitor abrogated FN and Col1A2 gene expression in HSF indicating involvement of STAT3 in ECM production. The cellular proliferation markers Cyclin D1, Bcl-Xl and c-Myc were also upregulated in HSF and knockdown of STAT3 by siRNA attenuated c-Myc expression indicating the essential role of STAT3 in fibroblast proliferation. Taken together, our results suggest that the IL-6-trans-signaling-STAT3 pathway may play an integral role in HS pathogenesis and disruption of this pathway could be a potential therapeutic strategy for the treatment of burn-induced HS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.