Abstract

BackgroundInterleukin-33 (IL-33) is an IL-1-like cytokine ligand for the IL-1 receptor-related protein ST2, that activates mast cells and Th2 lymphocytes, and induces production of Th2-associated cytokines in vivo. We initially discovered IL-33 as a nuclear factor (NF-HEV) abundantly expressed in high endothelial venules from lymphoid organs, that associates with chromatin and exhibits transcriptional regulatory properties. This suggested that, similarly to IL-1α and chromatin-associated cytokine HMGB1, IL-33 may act as both a cytokine and a nuclear factor. Although the activity of recombinant IL-33 has been well characterized, little is known yet about the expression pattern of endogenous IL-33 in vivo.Methodology/Principal FindingsHere, we show that IL-33 is constitutively and abundantly expressed in normal human tissues. Using a combination of human tissue microarrays and IL-33 monoclonal and polyclonal antibodies, we found that IL-33 is a novel nuclear marker of the endothelium widely expressed along the vascular tree. We observed abundant nuclear expression of IL-33 in endothelial cells from both large and small blood vessels in most normal human tissues, as well as in human tumors. In addition to endothelium, we also found constitutive nuclear expression of IL-33 in fibroblastic reticular cells of lymphoid tissues, and epithelial cells of tissues exposed to the environment, including skin keratinocytes and epithelial cells of the stomach, tonsillar crypts and salivary glands.Conclusions/SignificanceTogether, our results indicate that, unlike inducible cytokines, IL-33 is constitutively expressed in normal human tissues. In addition, they reveal that endothelial cells and epithelial cells constitute major sources of IL-33 in vivo. Based on these findings, we speculate that IL-33 may function, similarly to the prototype ‘alarmin’ HMGB1, as an endogenous ‘danger’ signal to alert the immune system after endothelial or epithelial cell damage during trauma or infection.

Highlights

  • IL-33 is the most recent addition to the IL-1 family [2,3]

  • It has been shown to function as a ligand for the IL-1 receptor-related protein ST2 (IL-1R4), a receptor expressed on mast cells, T helper type 2 (Th2) lymphocytes and cardiomyocytes [2,4]

  • Using in situ hybridization and immunohistochemistry with three distinct antisera, we previously reported that IL-33 is abundantly expressed in endothelial cells of high endothelial venules (HEVs), specialized blood vessels which mediate lymphocyte recruitment into lymphoid organs [1,3]

Read more

Summary

Introduction

IL-33 (initially designated NF-HEV for ‘‘Nuclear Factor from High Endothelial Venules’’ [1]) is the most recent addition to the IL-1 family [2,3]. We showed that IL33 possesses transcriptional regulatory properties and associates with chromatin in the nucleus of HEV endothelial cells in vivo [3,14] Together, these observations suggested that IL-33 is a dual function protein that may act as both a cytokine and an intracellular nuclear factor [3,14,15]. We initially discovered IL-33 as a nuclear factor (NF-HEV) abundantly expressed in high endothelial venules from lymphoid organs, that associates with chromatin and exhibits transcriptional regulatory properties. This suggested that, to IL-1a and chromatinassociated cytokine HMGB1, IL-33 may act as both a cytokine and a nuclear factor. The activity of recombinant IL33 has been well characterized, little is known yet about the expression pattern of endogenous IL-33 in vivo

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.