Abstract

Interleukin (IL)-1β plays a central role in the processes of human labour and delivery. The adaptor proteins involved in the IL-1β signalling pathway in human myometrium are not known. This study sought to determine the role of the adaptor proteins myeloid differentiation primary response 88 (MyD88), tumour necrosis factor receptor-associated factor 6 (TRAF6), IL-1 receptor-associated kinase 4 (IRAK4) and transforming growth factor beta-activated kinase 1 (TAK1) in IL-1β-induced formation of pro-inflammatory and pro-labour mediators in human myometrium. Human primary myometrial cells were transfected with siRNA against MyD88 (siMYD88), TRAF6 (siTRAF6), IRAK4 (siIRAK4) or TAK1 (siTAK1), treated with IL-1β, and assayed for the mRNA expression and or secretion of pro-inflammatory and pro-labour mediators. Transfection of primary myometrial cells with siMYD88, siTRAF6, siIRAK4 and siTAK1 significantly decreased IL-1β-induced IL-1α, IL-6, growth-regulated alpha protein (GRO-α), IL-8, monocyte chemoattractant protein (MCP)-1, intercellular adhesion molecule (ICAM)-1 and cyclooxygenase (COX)-2 mRNA expression and release of IL-6, GRO-α, IL-8, MCP-1, ICAM-1 and prostaglandin PGF2α. The expression and secretion of the extracellular matrix remodelling enzyme matrix metalloproteinase (MMP)-9 was significantly lower with siMYD88 and siTRAF6. Finally, IL-1β-induced nuclear factor κB (NF-κB) transcriptional activity was significantly attenuated by transfection with siMyD88, siTRAF6 and siIRAK4; there was no effect of siTAK1 transfection on NF-κB transcriptional activity. Collectively, these findings suggest that MyD88, TRAF6, IRAK4 and TAK1 are involved in IL-1β signalling in human myometrium. Further studies are required to determine if inhibition of these proteins can prevent preterm birth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.