Abstract

Fetal-neonatal alloimmune thrombocytopenia (FNAIT) diagnosis relies on maternofetal incompatibility and alloantibody identification. Genotyping for rare platelet (PLT) polymorphisms allowed the identification of three families with suspected or confirmed maternofetal incompatibility for the αIIb-c.2614C>A mutation (Halle et al., Transfusion 2008;48:14-15). A polymerase chain reaction-sequence-specific primers amplification assay was designed to genotype the αIIb-c.2614C>A mutation. HEK293 cells expressing αIIb-Leu841 or αIIb-Met841 αIIbβ3 forms were used to probe the reactivity of maternal sera from these families and to study the effects of the substitution on αIIbβ3 expression and functions. Tested by flow cytometry (FCM), one serum sample specifically reacted with αIIb-Met841 but not with αIIb-Leu841 αIIbβ3. This specificity revealed the αIIb-Leu841 polymorphism as a new alloantigen named Cab3(a+) . Cross-match testing using FCM also showed the Cab3(a+) antigen to be expressed at the PLT surface. As for anti-human PLT alloantigen (HPA)-3a (or -3b) and anti-HPA-9bw, detection of anti-Cab3(a+) alloantibodies appeared difficult and required whole PLT assays when classical monoclonal antibody-specific immobilization of PLT antigen test failed. In our FNAIT set, the immune response to Cab3(a+) maternofetal incompatibility could induce severe thrombocytopenias and life-threatening hemorrhages. The p.Leu841Met substitution has limited effects, if any, on local αIIb structure, preserving both αIIbβ3 expression and functions. The Cab3(a+) polymorphism is a new rare alloantigen (allelic frequency <1%) carried by αIIb that might result in severe life-threatening thrombocytopenias. In Sub-Saharan African populations, higher Cab3(a+) gene frequencies (up to 8.2%; Halle et al., Transfusion 2008;48:14-15) and homozygous people are observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.