Abstract

In an isothermal process, applying an electric field E to a ferroelectric material can change its entropy S through two distinct mechanisms: namely, through changing the dipole alignment or configurational entropy (ΔSconf), and the vibrational entropy due to the intrinsic structure response (ΔSvib). Previous numerical investigations yield only the total entropy change ΔS but cannot separate these two contributions. Here we develop a full first-principles method to extract ΔSvib and the corresponding induced adiabatic temperature change ΔTvib under E, i.e., the electrocaloric effect (ECE), and compare them to the total ΔS and ΔT from molecular dynamics simulation based on a first-principles effective Hamiltonian model. For both single crystal PbTiO3 (PTO) and PbZr0.5Ti0.5O3 (50/50 PZT), the calculation results show that for T far from the phase transition temperature Tpt, ΔSvib plays an important and even dominant role in the ECE. On the other hand, for T close to Tpt, ΔSconf dominates the ECE. Moreover, for PTO, we find that positive E can cause positive ECE, while negative E cause negative ECE. Therefore, by combining both positive and negative ECE in a “bipolar” Ericsson cycle, the cooling energy density can significantly increase as compared to that of a unipolar cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.