Abstract

BackgroundPatients with inflammatory bowel disease (IBD) present with reduced serum insulin-like growth factor I (IGF-I). Anti-inflammatory treatment with prednisolone or infliximab ameliorates symptoms and increases circulating IGF-I, but prednisolone induces catabolism, whereas infliximab may promote protein synthesis. Recently, stanniocalcin-2 (STC2) was discovered as a novel inhibitor of the enzyme pregnancy-associated plasma protein-A (PAPP-A), which modulates IGF-I activity. PAPP-A can cleave IGF binding protein-4 (IGFBP-4), upon which IGF-I is liberated. We hypothesized that prednisolone and infliximab exert different effects on levels of STC2, PAPP-A, and IGFBP-4, thereby explaining the distinct metabolic effects of prednisolone and infliximab.MethodsThirty-eight patients with active IBD treated with either prednisolone (n = 17) or infliximab (n = 21) were examined before and after 7 days of treatment. Circulating levels of IGF-I, IGF-II, IGFBP-3, PAPP-A, and STC2 were measured by immunoassays. Intact IGFBP-4 and two IGFBP-4 fragments were determined by a novel immunoassay. Bioactive IGF was assessed by cell-based IGF receptor activation assay. Concentrations of IGFBP-4, PAPP-A, and STC2 on day 0 and 7 were compared to healthy control subjects.ResultsFollowing seven days of prednisolone treatment, total and bioactive IGF-I were increased (p < 0.001 and p < 0.05, respectively). Upon infliximab treatment, total IGF-I levels were augmented (p < 0.05), yet IGF bioactivity remained unaltered. Intact IGFBP-4 and the two IGFBP-4 fragments generated upon cleavage by PAPP-A were all decreased following treatment with either prednisolone or infliximab (all p < 0.05). PAPP-A levels were only increased by infliximab (p = 0.005), whereas the inhibitor STC2 did not respond to any of the treatments.ConclusionIGF-I and IGFBP-4 concentrations were markedly altered in patients with IBD and near-normalized with disease remission following treatment with prednisolone or infliximab. Thus, IGFBP-4 may modulate IGF bioavailability in IBD. The effect of immunosuppression did not appear to extend beyond the regulation of IGF and IGFBP-4, as neither PAPP-A nor STC2 were discernibly affected.Trial registrationClinicalTrials.gov: NCT00955123. Date of registration: August 7, 2009 (retrospectively registered).

Highlights

  • Patients with inflammatory bowel disease (IBD) present with reduced serum insulin-like growth factor I (IGF-I)

  • Our study implies that the distinct metabolic effects of prednisolone and infliximab may primarily be regulated at the local tissue level rather than through alterations in the circulating Insulin-like growth factor (IGF) system

  • Our finding suggests that prednisolone and infliximab affect IGFBP4 protein transcription or translation either directly or indirectly

Read more

Summary

Introduction

Patients with inflammatory bowel disease (IBD) present with reduced serum insulin-like growth factor I (IGF-I). Anti-inflammatory treatment with prednisolone or infliximab ameliorates symptoms and increases circulating IGF-I, but prednisolone induces catabolism, whereas infliximab may promote protein synthesis. Patients present with an ongoing systemic auto-inflammation and various metabolic deteriorations, including submucosal fat deposition, insulin and growth hormone (GH) resistance, hypertension, and dyslipidemia [2, 3]. Current treatment strategies in IBD include corticosteroids and anti-inflammatory biological agents. In the past two decades, the use of anti-inflammatory biological agents, including antibodies against tumor necrosis factor-α (TNF-α) (infliximab), has become ubiquitous, both as a first-line treatment and when treatment with prednisolone fails to control the inflammation [1]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call