Abstract

In infectious diseases, the enzyme indoleamine 2,3 dioxygenase-1 (IDO1) that catalyzes the tryptophan (Trp) degradation along the kynurenines (Kyn) pathway has two main functions, the control of pathogen growth by reducing available Trp and immune regulation mediated by the Kyn-mediated expansion of regulatory T (Treg) cells via aryl hydrocarbon receptor (AhR). In pulmonary paracoccidioidomycosis (PCM) caused by the dimorphic fungus Paracoccidioides brasiliensis, IDO1 was shown to control the disease severity of both resistant and susceptible mice to the infection; however, only in resistant mice, IDO1 is induced by TGF-β signaling that confers a stable tolerogenic phenotype to dendritic cells (DCs). In addition, in pulmonary PCM, the tolerogenic function of plasmacytoid dendritic cells was linked to the IDO1 activity. To further evaluate the function of IDO1 in pulmonary PCM, IDO1-deficient (IDO1−/−) C57BL/6 mice were intratracheally infected with P. brasiliensis yeasts and the infection analyzed at three postinfection periods regarding several parameters of disease severity and immune response. The fungal loads and tissue pathology of IDO1−/− mice were higher than their wild-type controls resulting in increased mortality rates. The evaluation of innate lymphoid cells showed an upregulated differentiation of the innate lymphoid cell 3 phenotype accompanied by a decreased expansion of ILC1 and NK cells in the lungs of infected IDO1−/− mice. DCs from these mice expressed elevated levels of costimulatory molecules and cytokine IL-6 associated with reduced production of IL-12, TNF-α, IL-1β, TGF-β, and IL-10. This response was concomitant with a marked reduction in AhR production. The absence of IDO1 expression caused an increased influx of activated Th17 cells to the lungs with a simultaneous reduction in Th1 and Treg cells. Accordingly, the suppressive cytokines IL-10, TGF-β, IL-27, and IL-35 appeared in reduced levels in the lungs of IDO1−/− mice. In conclusion, the immunological balance mediated by the axis IDO/AhR is fundamental to determine the balance between Th17/Treg cells and control the severity of pulmonary PCM.

Highlights

  • Indoleamine 2,3 dioxygenase-1 (IDO1) is an enzyme that catalyzes the degradation of tryptophan (Trp) along the kynurenines (Kyn) pathway

  • We have explored the regulatory mechanism exerted by IDO1 in both phases of immunity against P. brasiliensis infection

  • It was quite interesting to verify the close association between T cell phenotypes and those of innate lymphoid cells (ILCs), a class of innate cells present at the site of infection at the early phase of infection that plays an important role in the further definition of adaptive immunity [34]

Read more

Summary

Introduction

Indoleamine 2,3 dioxygenase-1 (IDO1) is an enzyme that catalyzes the degradation of tryptophan (Trp) along the kynurenines (Kyn) pathway. This enzyme plays a critical role to host defenses against a wide range of pathogens by inducing Trp starvation and controlling inflammatory. It is known that IDO1 can affect immunity through two nonexclusive mechanisms: (a) establishment of a local response with “amino acid deprivation” that inhibits cell and pathogen proliferation [2]; (b) cascade generation of Trp metabolites with specific immunomodulatory or cytotoxic functions that inhibit T cell activation and modulate the differentiation of naïve T cells into regulatory T (Treg) cells [1, 4, 5]. Kyn has immunomodulatory effects in the absence of Trp starvation, via activation of the transcription factor aryl hydrocarbon receptor (AhR) [6, 7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call