Abstract
This paper designs an algorithm to distill the piecewise non-linear dynamical system from the data without prior knowledge. The system to be identified does not have to be written as a known model term or be thoroughly understood. We exploit the fact that an unknown piecewise non-linear system can be decomposed into the Fourier series as long as its equations of motion are Riemann integrable. Based on this property, we reduce the challenge of finding the correct model to discovering the Fourier series approximation. However, the Fourier series approximation of the piecewise function is inaccurate. The new method takes advantage of this weakness to determine whether the model has piecewise features and to find a way to discover the discontinuity set. Then, the dynamical system on each segment is identified as a pure Fourier series. Identification of intricate models can be achieved in simple steps. The results show that the method can accurately discover the equation of motion and precisely capture the non-smooth characteristic. Next, the prediction and further detailed analysis can be carried out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.