Abstract
The spines and bloom of cucumber (Cucumis sativus L.) fruit are two important quality traits related to fruit market value. However, until now, none of the genes involved in the formation of cucumber fruit spines and bloom trichomes has been identified. Here, the characterization of trichome development in wild-type (WT) cucumber and a spontaneous mutant, glabrous 1 (csgl1) controlled by a single recessive nuclear gene, with glabrous aerial organs, is reported. Via map-based cloning, CsGL1 was isolated and it was found that it encoded a member of the homeodomain-leucine zipper I (HD-Zip I) proteins previously identified to function mainly in the abiotic stress responses of plants. Tissue-specific expression analysis indicated that CsGL1 was strongly expressed in trichomes and fruit spines. In addition, CsGL1 was a nuclear protein with weak transcriptional activation activity in yeast. A comparative analysis of the digital gene expression (DGE) profile between csgl1 and WT leaves revealed that CsGL1 had a significant influence on the gene expression profile in cucumber, especially on genes related to cellular process, which is consistent with the phenotypic difference between csgl1 and the WT. Moreover, two genes, CsMYB6 and CsGA20ox1, possibly involved in the formation of cucumber trichomes and fruit spines, were characterized. Overall, the findings reveal a new function for the HD-Zip I gene subfamily, and provide some candidate genes for genetic engineering approaches to improve cucumber fruit external quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.