Abstract
Thymosin beta-10 (TB10) is an actin monomer-sequestering peptide that consists of 43 amino acid residues and that tends to form alpha-helical structures. Previously, we showed that the overexpression of TB10 dramatically increases the frequency of apoptosis in human ovarian cancer cells. To identify the critical residues responsible for TB10-mediated apoptosis, we used a series of computational methods. First, a three-dimensional structure of human TB10 was constructed using the homology modeling method with the calf thymosin beta-9 NMR structure as a template. Although the sequences of both of these structures are almost identical, 200-ps molecular dynamics simulation results showed that their secondary structures differ. Analyses of molecular dynamics snapshot structures suggested that the TB10 structure is conformationally more complicated than the TB9 structure. The conserved 17LKKTET(22 motif region of TB10 was tested by Ala and Ser scanning mutagenesis using computational and biochemical methods, and 12 mutants were transfected into cancer cell lines and tested for their effects on growth arrest. Of the 12 mutants examined, only the Thr20 to Ser20 mutation showed reduced growth arrest. These results strongly suggest that Thr20 is specifically required for actin sequestration by TB10 in ovarian cancer cells. These results may provide useful information for the development of a new ovarian cancer therapy.
Highlights
The -thymosins are small highly conserved acidic proteins
The conserved 17LKKTET22 motif region of TB10 was tested by Ala and Ser scanning mutagenesis using computational and biochemical methods, and 12 mutants were transfected into cancer cell lines and tested for their effects on growth arrest
We employed a combined approach involving molecular modeling and site-directed mutagenesis to better understand the molecular regions of TB10 that control apoptosis
Summary
The -thymosins are small (molecular mass Ͻ 5 kDa) highly conserved acidic proteins. They were originally identified in calf thymus and thought to be involved in immunomodulatory functions [1]. The conserved 17LKKTET22 motif region of TB10 was tested by Ala and Ser scanning mutagenesis using computational and biochemical methods, and 12 mutants were transfected into cancer cell lines and tested for their effects on growth arrest. This region was tested in transfected ovarian cancer cell lines via mutagenesis (Ala and Ser scanning) of the conserved 17LKKTET22 motif with respect to actin binding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.