Abstract

Nitraria sibirica is a shrub that can survive in extreme drought environments. The auxin-response factors (ARFs) are a class of transcription factors that are widely involved in plant growth and development, as well as in the regulation of stress resistance. However, the genome-wide identification of the ARF gene family and its responses to environmental stresses, especially drought stress, in N. sibirica has not yet been reported. Here, we identified a total of 12 ARF genes in the genome of N. sibirica, which were distributed over 10 chromosomes and divided into three clades. Intragenome synteny analysis revealed one collinear gene pair in the ARF gene family, i.e., NsARF9a and NsARF9b. Cis-acting element analysis showed that multiple hormones and stress-responsive cis-acting elements were found in the promoters of NsARFs, suggesting that NsARFs may be involved in multiple biological processes. Quantitative real-time PCR (qRT-PCR) showed that many NsARFs had tissue-specific expression patterns, with the highest expression of NsARF16 in the seedlings of N. sibirica. In addition, most of the NsARFs that were upregulated under drought were independent of endogenous ABA biosynthesis, whereas the response of NsARF5 and NsARF7a to drought was disrupted by the ABA-biosynthesis inhibitor fluridone. These studies provide a basis for further research into how NsARFs in N. sibirica respond to hormonal signaling and environmental stresses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.