Abstract

Given two unital associative rings R ⊆ S, the ring S is said to be an ideal (or Dorroh) extension of R if S = R ⊕ I, for some ideal I ⊆ S. In this note, we investigate the ideal structure of an arbitrary ideal extension of an arbitrary ring R. In particular, we describe the Jacobson and upper nil radicals of such a ring, in terms of the Jacobson and upper nil radicals of R, and we determine when such a ring is prime and when it is semiprime. We also classify all the prime and maximal ideals of an ideal extension S of R, under certain assumptions on the ideal I. These are generalizations of earlier results in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.