Abstract

The stress-strain curves under tensile deformation in the 〈100〉, 〈110〉, and 〈111〉 directions and under shear deformation in the (001)〈110〉, $(110)\langle \overline {1}10\rangle $ , $(111)\langle 1\overline {1}0\rangle $ , and $(111)\langle 11\overline {2}\rangle $ slip systems have been systematically calculated by first-principles method to study the ideal strengths of superconducting MgCNi3 and CdCNi3. The ideal strengths in the three tensile directions are found to be reduced in the order of 〈100〉 → 〈110〉 → 〈111〉 and those for the four shear slip systems in the order of $(110)\langle \overline {1}10\rangle \rightarrow (111)\langle 11\overline {2}\rangle \rightarrow (111)\langle 1\overline {1}0\rangle \rightarrow (001)\langle 110\rangle $ for both superconductors. Their lowest ideal tensile strengths are found to be larger than the corresponding highest ideal shear strengths, which could explain why both superconductors have the ductility. The obtained lattice constants and elastic properties coincide well with the the available experimental and theoretical values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.