Abstract

Garfinkel's solution of the Ideal Resonance problem derived from a Bohlin-von Zeipel procedure, and Jupp's solution, using Poincare's action and angle variables and an application of Lie series expansions, are compared. Two specific Hamiltonians are chosen for the comparison and both solutions are compared with the numerical solutions obtained from direct integrations of the equations of motion. It is found that in deep resonance the second-mentioned solution is generally more accurate, while in the classical limit the first solution gives excellent agreement with the numerical integrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.