Abstract

Harbin, located in northeast China (NEC), has obvious monsoon climate characteristics due to the influence of its geographical environment. Under the control of the polar continental air mass, winter in Harbin is exceedingly cold and long, with the frequent invasion of the cold and dry air from the north. Because of its intensely cold climate in winter, Harbin has created a local form of tourism with its own characteristics: the snow and ice landscape attracts a large number of tourists. Therefore, the anomalies of air temperature and precipitation in winter have an important impact on the livelihood of the local people and economy. In the winter of 2018/2019, the ice and snow tourism in Harbin was harshly affected by the extreme weather, and the direct cause is the anomalies of atmospheric circulation. There is a center of strong positive geopotential height anomalies over east China, which favors the movement of warm air northwards to the NEC, resulting in warmer-than-normal air temperature. Anomalous precipitation is largely controlled by the anomalies of local water vapor and air temperature. The aim of this study was to determine whether the warmer-than-normal temperature, which made the atmosphere more resistant to saturation, was the primary cause of the reduced snowfall. The relative importance of water vapor and air temperature anomalies to the anomalous precipitation was compared. The results suggest that the warmer-than-normal temperature affected all levels, but its impact on the near-surface level was greater. At the middle and upper levels (above 850 hPa), in addition to the warmer-than-normal temperature, the amount of water vapor was less than normal. These conditions both reduced the amount of snow; however, by comparison, the dryness of the air contributed more significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call