Abstract

The activation of nuclear factor-κB (NF-κB) is a crucial step in the arterial wall's response to injury. The identification and characterization of the NF-κB essential modulator-binding domain (NBD) peptide, which can block the activation of the IκB kinase complex, have provided an opportunity to selectively abrogate the inflammation-induced activation of NF-κB. The aim of the present study was to evaluate the effect of the NBD peptide on neointimal formation. In the rat carotid artery balloon angioplasty model, local treatment with the NBD peptide (300 μg/site) significantly reduced the number of proliferating cells at day 7 (by 40%; P<0.01) and reduced injury-induced neointimal formation (by 50%; P<0.01) at day 14. These effects were associated with a significant reduction of NF-κB activation and monocyte chemotactic protein-1 expression in the carotid arteries of rats treated with the peptide. In addition, the NBD peptide (0.01 to 1 μmol/L) reduced rat smooth muscle cell proliferation, migration, and invasion in vitro. Similar results were observed in apolipoprotein E(-/-) mice in which the NBD peptide (150 μg/site) reduced wire-induced neointimal formation at day 28 (by 47%; P<0.01). The NBD peptide reduces neointimal formation and smooth muscle cell proliferation/migration, both effects associated with the inhibition of NF-κB activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call