Abstract

BackgroundMechanisms by which Smac mimetics (SMs) interact with proteasome inhibitors (e.g., bortezomib) are largely unknown, particularly in multiple myeloma (MM), a disease in which bortezomib represents a mainstay of therapy.MethodsInteractions between the clinically relevant IAP (inhibitor of apoptosis protein) antagonist birinapant (TL32711) and the proteasome inhibitor bortezomib were investigated in multiple myeloma (MM) cell lines and primary cells, as well as in vivo models. Induction of apoptosis and changes in gene and protein expression were monitored using MM cell lines and confirmed in primary MM cell populations. Genetically modified cells (e.g., exhibiting shRNA knockdown or ectopic expression) were employed to evaluate the functional significance of birinapant/bortezomib-induced changes in protein levels. A MM xenograft model was used to evaluate the in vivo activity of the birinapant/bortezomib regimen.ResultsBirinapant and bortezomib synergistically induced apoptosis in diverse cell lines, including bortezomib-resistant cells (PS-R). The regimen robustly downregulated cIAP1/2 but not the canonical NF-κB pathway, reflected by p65 phosphorylation and nuclear accumulation. In contrast, the bortezomib/birinapant regimen upregulated TRAF3, downregulated TRAF2, and diminished p52 processing and BCL-XL expression, consistent with disruption of the non-canonical NF-κB pathway. TRAF3 knockdown, ectopic TRAF2, or BCL-XL expression significantly diminished birinapant/bortezomib toxicity. The regimen sharply increased extrinsic apoptotic pathway activation, and cells expressing dominant-negative FADD or caspase-8 displayed markedly reduced birinapant/bortezomib sensitivity. Primary CD138+ (n = 43) and primitive MM populations (CD138−/19+/20+/27+; n = 31) but not normal CD34+ cells exhibited significantly enhanced toxicity with combined treatment (P < 0.0001). The regimen was also fully active in the presence of HS-5 stromal cells or growth factors (e.g., IL-6 and VEGF). Finally, the regimen was well tolerated and significantly increased survival (P < 0.05 and P < 0.001) compared to single agents in a MM xenograft model. Combined treatment also downregulated cIAP1/2 and p52 while increasing PARP cleavage in MM cells in vivo.ConclusionsOur data suggest that birinapant and bortezomib interact synergistically in MM cells, including those resistant to bortezomib, through inactivation of the non-canonical NF-κB and activation of the extrinsic apoptotic pathway both in vitro and in vivo. They also argue that a strategy combining cIAP antagonists and proteasome inhibitors warrants attention in MM.

Highlights

  • Mechanisms by which Smac mimetics (SMs) interact with proteasome inhibitors are largely unknown, in multiple myeloma (MM), a disease in which bortezomib represents a mainstay of therapy

  • The canonical Nuclear factor-kappa B (NF-κB) pathway is classically activated by TNFα, whereas the non-canonical pathway is activated by CD40 ligation and BAFF/APRIL [6]

  • Our data suggest that birinapant and bortezomib interact synergistically in MM cells, including those resistant to bortezomib, through inactivation of the non-canonical NF-κB and activation of the extrinsic apoptotic pathway both in vitro and in vivo. They argue that a strategy combining cIAP antagonists and proteasome inhibitors warrants attention in MM

Read more

Summary

Introduction

Mechanisms by which Smac mimetics (SMs) interact with proteasome inhibitors (e.g., bortezomib) are largely unknown, in multiple myeloma (MM), a disease in which bortezomib represents a mainstay of therapy. Multiple myeloma (MM) is an accumulative disease of mature plasma cells that is incurable in the majority of cases [1]. Despite the development of highly effective drugs including proteasome inhibitors (e.g., bortezomib, carfilzomib), immunomodulatory agents (e.g., lenalidomide, pomalidomide), and various therapeutic CD38 antibodies (daratumumab, isatuximab, and MOR202) [2,3,4], therapeutic resistance and disease progression invariably supervene. One of the hallmarks of MM cells is NF-κB pathway dependence [5]. Proteasome inhibitor (e.g., bortezomib) activity has been attributed to NF-κB inhibition [9] presumably secondary to sparing of IκBα, which binds RelA and prevents nuclear translocation and activation [10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.