Abstract

We recently identified a new human subset of NK-like [KIR/NKG2A(+)] CD8(+) T cells with a marked/memory phenotype, high Eomesodermin expression, potent antigen-independent cytotoxic activity, and the capacity to generate IFN-γ rapidly after exposure to pro-inflammatory cytokines. These features support the hypothesis that this new member of the innate T cell family in humans, hereafter referred to as innate CD8(+) T cells, has a role in cancer immune surveillance analogous to invariant natural killer T (iNKT) cells. Here, we report the first quantitative and functional analysis of innate CD8(+) T cells in a physiopathological context in humans, namely chronic myeloid leukemia (CML), a well-characterized myeloproliferative disorder. We have chosen CML based on our previous report that IL-4 production by iNKT cells was deficient in CML patients at diagnosis and considering the recent evidence in mice that IL-4 promotes the generation/differentiation of innate CD8(+) T cells. We found that the pool of innate CD8(+) T cells was severely reduced in the blood of CML patients at diagnosis. Moreover, like iNKT and NK cells, innate CD8(+) T cells were functionally impaired, as attested by their loss of antigen-independent cytotoxic activity and IFN-γ production in response to innate-like stimulation with IL-12 + IL-18. Remarkably, as previously reported for IL-4 production by iNKT cells, both quantitative and functional deficiencies of innate CD8(+) T cells were at least partially corrected in patients having achieved complete cytogenetic remission following tyrosine kinase inhibitor therapy. Finally, direct correlation between the functional potential of innate CD8(+) T and iNKT cells was found when considering all healthy donors and CML patients in diagnosis and remission, in accordance with the iNKT cell-dependent generation of innate CD8(+) T cells reported in mice. All in all, our data demonstrate that CML is associated with deficiencies of innate CD8(+) T cells that are restored upon remission, thereby suggesting their possible contribution to disease control. More generally, our study strongly supports the existence of an innate iNKT/innate CD8(+) T-cell axis in humans and reveals its potential contribution to the restoration of tumor immune surveillance.

Highlights

  • A hallmark of the antigen-specific T lymphocytes of the adaptive immune system is their capacity to “remember” foreign pathogens long after they are first encountered

  • We have previously reported [12] and have confirmed in our present Healthy donors (HDs) cohort (Figure 2A) that the rapid production of IFN-γ in response to innate-like stimulation by IL-12 + IL-18 constitutes a unique hallmark of innate CD8(+) T cells

  • This functional reactivity to IL-12 + IL-18 was found in the innate killer cell Ig-like receptor (KIR)/NKG2A(+) Eomes(+) fraction (24.8% ± 1.2; n = 6) and not in the conventional/memory KIR/NKG2A(−) Eomes(+) pools of CD8(+) T cells (1.4% ± 0.8; n = 6)

Read more

Summary

Introduction

A hallmark of the antigen-specific T lymphocytes of the adaptive immune system is their capacity to “remember” foreign pathogens long after they are first encountered. Even though the actual physiological significance of innate/memory CD8(+) T cells remains to be established, these cells have enhanced response potential, including the ability to efficiently combat pathogens [5, 6]. Because these cells can rapidly produce large amounts of IFN-γ in response to innate-like stimulation by IL-12 + IL-18 [7, 8], they might contribute to the inflammation milieu during an early stage of immune response

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call