Abstract

Although environmental, social and physical stressors have been shown to inhibit food intake and feeding behavior in fish, little is known about the mechanisms that mediate the appetite-suppressing effects of stress. Since the hypothalamic–pituitary–interrenal (HPI) axis is activated in response to most forms of stress in fish, components of this axis may be involved in mediating the food intake reductions elicited by stress. Recent investigations into the brain regulation of food intake in fish have identified several signals with orexigenic and anorexigenic properties. Among these appetite-regulating signals are related neuropeptides that can activate the HPI axis, namely corticotropin-releasing factor (CRF) and urotensin I (UI). Central injections of CRF or UI, or treatments that result in an increase in hypothalamic CRF and UI gene expression, can elicit dose-dependent decreases in food intake that can be reversed by pre-treatment with a CRF-receptor antagonist. Evidence also suggests that cortisol, the end product of HPI activation in most fishes (i.e. Osteichthyes), may be involved in the regulation of food intake. Overall, while elements of the HPI axis may mediate some of the appetite-suppressing effects of stress, it is undetermined how either CRF-related peptides, cortisol, or other elements of the stress response interact with the complex circuitry of the hypothalamic feeding center.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call