Abstract
Rising temperatures resulting from climate change will increase the incidence of heat stress, negatively impacting the labor force and food animal production. Heat stress elevates circulating β-OH butyrate, which induces vasodilation through GPR109a. Interestingly, both heat stress and intraperitoneal β-OH butyrate administration induce hypophagia. Thus, we aimed to investigate the role of β-OH butyrate in heat stress hypophagia in mice. We found that niacin, a β-OH butyrate mimetic that cannot be oxidized to generate ATP, also reduces food intake. Interestingly, the depression in food intake as a result of 8-h intraperitoneal niacin or 48-h heat exposure did not result from changes in hypothalamic expression of orexigenic or anorexigenic signals (AgRP, NPY, or POMC). Genetically eliminating GPR109a expression did not prevent the hypophagic response to heat exposure, intraperitoneal β-OH butyrate (5.7 mmol/kg), or niacin (0.8 mmol/kg). Hepatic vagotomy eliminated the hypophagic response to β-OH butyrate and niacin but did not affect the hypophagic response to heat exposure. We subsequently hypothesized that the hypophagic response to heat stress may depend on direct effects of β-OH butyrate at the central nervous system: β-OH butyrate induced hormonal changes (hyperinsulinemia, hypercorticosteronemia, and hyperleptinemia), or gene expression changes. To test these possibilities, we blocked expression of hepatic hydroxyl methyl glutaryl CoA synthase II (HMGCS2) to prevent hepatic β-OH butyrate synthesis. Mice that lack HMGCS2 maintain a hypophagic response to heat stress. Herein, we establish that the hypophagia of heat stress is independent of GPR109a, the hepatic vagus afferent nerve, and hepatic ketone body synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.