Abstract
We characterize the hyperplanes of the dual polar space DW(2n−1,q) which arise from projective embeddings as those hyperplanes H of DW(2n−1,q) which satisfy the following property: if Q is an ovoidal quad, then Q∩H is a classical ovoid of Q. A consequence of this is that all hyperplanes of the dual polar spaces DW(2n−1,4), DW(2n−1,16) and DW(2n−1,p) (p prime) arise from projective embeddings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.