Abstract

Siegel, in a letter to Mordell of 1925(9), proved that the hyper-elliptic equation y2 = g(x) has only finitely many solutions in integers x and y, where g denotes a square-free polynomial of degree at least three with integer coefficients. Siegel's method reduces the hyperelliptic equation to a finite set of Thue equations f(x, y) = 1, where f denotes a binary form with algebraic coefficients and at least three distinct linear factors; x and y are integral in a fixed algebraic number field. Siegel had already proved that the Thue equations so obtained have only finitely many solutions. However, as is well known, the work of Siegel is ineffective in that it fails to provide bounds on the integer solutions of y2 = g(x). In 1969 Baker (1), using the theory of linear forms in logarithms, employed Siegel's technique to establish explicit bounds on x and y; Baker's result thus reduced the problem of determining all integer solutions of the hyperelliptic equation to a finite amount of computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.