Abstract

The relative rate technique has been used to measure the hydroxyl radical (OH) reaction rate constant of ethyl 3-ethoxypropionate (EEP, CH3CH2(SINGLE BOND)O(SINGLE BOND)CH2CH2C(O)O(SINGLE BOND)CH2CH3). EEP reacts with OH with a bimolecular rate constant of (22.9±7.4)×10−12 cm3 molecule−1s−1 at 297±3 K and 1 atmosphere total pressure. In order to more clearly define EEP's atmospheric reaction mechanism, an investigation into the OH+EEP reaction products was also conducted. The OH+EEP reaction products and yields observed were: ethyl glyoxate (EG, 25±1% HC((DOUBLE BOND)O)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl (2-formyl) acetate (EFA, 4.86±0.2%, HC((DOUBLE BOND)O)(SINGLE BOND)CH2(SINGLE BOND)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl (3-formyloxy) propionate (EFP, 30±1%, HC((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH2(SINGLE BOND)C((DOUBLE BOND)O)(SINGLE BOND)O(SINGLE BOND)CH2CH3), ethyl formate (EF, 37±1%, HC((DOUBLE BOND)O)O(SINGLE BOND)CH2CH3), and acetaldehyde (4.9±0.2%, HC((DOUBLE BOND)O)CH3). Neither the EEP's OH rate constant nor the OH/EEP reaction products have been previously reported. The products' formation pathways are discussed in light of current understanding of oxygenated hydrocarbon atmospheric chemistry. © 1997 John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call