Abstract

Fungal hydrophobins are a group of surface active, self-assembling proteins. The filamentous fungus Trichoderma reesei produces two (class II) hydrophobins, HFBI and HFBII. We have studied how these water-soluble hydrophobins behave in two-phase systems using a series of nonionic surfactants with different characteristics. It was found that both hydrophobins, but especially HFBI, had a very high affinity for the surfactants. The highest partitioning coefficient, over 2500, was observed for HFBI with C(11)EO(2). Reducing the disulfides in the protein resulted in a complete loss of affinity for the surfactant, which demonstrates that the interaction is dependent on the disulfide-stabilized conformation. The hydrophobins could be efficiently extracted back from the surfactant phase by addition of alcohols such as isobutanol. Effects of the type of surfactant, temperature, pH, and ionic strength were investigated. The use of this method for purifying the proteins from crude fungal culture supernatants is demonstrated and implications of the protein-polymer interaction are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.